Precoloring Extension with Fixed Color Bound

نویسنده

  • J. KRATOCHVÍL
چکیده

Precoloring Extension (shortly PrExt) is the following problem: Given a graph G with some precolored vertices and a color bound k, can the precoloring of G be extended to a proper coloring of all vertices of G using not more than k colors? Answering an open problem from [6], we prove that PrExt with fixed color bound k = 3 is NP-complete for bipartite (and even planar) graphs, and we prove a general result on parametrized PrExt. We also give a simplified argument why PrExt with fixed color bound is solvable in polynomial time for graphs of bounded treewidth (and hence also for chordal graphs).

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Updating the complexity status of coloring graphs without a fixed induced linear forest

A graph is H-free if it does not contain an induced subgraph isomorphic to the graph H. The graph Pk denotes a path on k vertices. The `-Coloring problem is the problem to decide whether a graph can be colored with at most ` colors such that adjacent vertices receive different colors. We show that 4-Coloring is NP-complete for P8free graphs. This improves a result of Le, Randerath, and Schierme...

متن کامل

Precoloring extension on unit interval graphs

In the precoloring extension problem we are given a graph with some of the vertices having a preassigned color and it has to be decided whether this coloring can be extended to a proper k-coloring of the graph. Answering an open question of Hujter and Tuza [6], we show that the precoloring extension problem is NP-complete on unit interval graphs.

متن کامل

The d-precoloring problem for k-degenerate graphs

In this paper we deal with the d-Precoloring Extension problem, (d-PrExt), in various classes of graphs. The d-PrExt problem is the special case of precoloring extension problem where, for a fixed constant d, input instances are restricted to contain at most d precolored vertices for every available color. The goal is to decide if there exists an extension of given precoloring using only availa...

متن کامل

Precoloring extension on chordal graphs

In the precoloring extension problem (PrExt) we are given a graph with some of the vertices having a preassigned color and it has to be decided whether this coloring can be extended to a proper k-coloring of the graph. 1-PrExt is the special case where every color is assigned to at most one vertex in the precoloring. Answering an open question of Hujter and Tuza [HT96], we show that the 1-PrExt...

متن کامل

A Technique for Exact Computation of precoloring Extension on Interval Graphs

Inspired by a real-life application, we investigate the computationally hard problem of extending a precoloring of an interval graph to a proper coloring under some bound on the number of available colors. We are interested in quickly determining whether or not such an extension exists on instances occurring in practice in connection with campsite bookings on a campground. A naive exhaustive se...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1999